Automated fitting or creation of custom vine copula models
Usage
vine(
data,
margins_controls = list(mult = NULL, xmin = NaN, xmax = NaN, bw = NA, deg = 2),
copula_controls = list(family_set = "all", structure = NA, par_method = "mle",
nonpar_method = "constant", mult = 1, selcrit = "aic", psi0 = 0.9, presel = TRUE,
allow_rotations = TRUE, trunc_lvl = Inf, tree_crit = "tau", threshold = 0, keep_data
= FALSE, show_trace = FALSE, cores = 1),
weights = numeric(),
keep_data = FALSE,
cores = 1
)
vine_dist(margins, pair_copulas, structure)
Arguments
- data
a matrix or data.frame. Discrete variables have to be declared as
ordered()
.- margins_controls
a list with arguments to be passed to
kde1d::kde1d()
. Currently, there can bemult
numeric vector of length one or d; all bandwidths for marginal kernel density estimation are multiplied withmult
. Defaults tolog(1 + d)
whered
is the number of variables after applyingrvinecopulib:::expand_factors()
.xmin
numeric vector of length d; seekde1d::kde1d()
.xmax
numeric vector of length d; seekde1d::kde1d()
.bw
numeric vector of length d; seekde1d::kde1d()
.deg
numeric vector of length one or d;kde1d::kde1d()
.
- copula_controls
a list with arguments to be passed to
vinecop()
.- weights
optional vector of weights for each observation.
- keep_data
whether the original data should be stored; if you want to store the pseudo-observations used for fitting the copula, use the
copula_controls
argument.- cores
the number of cores to use for parallel computations.
- margins
A list with with each element containing the specification of a marginal stats::Distributions. Each marginal specification should be a list with containing at least the distribution family (
"distr"
) and optionally the parameters, e.g.list(list(distr = "norm"), list(distr = "norm", mu = 1), list(distr = "beta", shape1 = 1, shape2 = 1))
. Note that parameters that have no default values have to be provided. Furthermore, ifmargins
has length one, it will be recycled for every component.- pair_copulas
A nested list of 'bicop_dist' objects, where
pair_copulas[[t]][[e]]
corresponds to the pair-copula at edgee
in treet
.- structure
an
rvine_structure
object, namely a compressed representation of the vine structure, or an object that can be coerced into one (seervine_structure()
andas_rvine_structure()
). The dimension must belength(pair_copulas[[1]]) + 1
.
Value
Objects inheriting from vine_dist
for vine_dist()
, and
vine
and vine_dist
for vine()
.
Objects from the vine_dist
class are lists containing:
margins
, a list of marginals (see below).copula
, an object of the classvinecop_dist
, seevinecop_dist()
.
For objects from the vine
class, copula
is also an object of the class
vine
, see vinecop()
. Additionally, objects from the vine
class contain:
margins_controls
, alist
with the set of fit controls that was passed tokde1d::kde1d()
when estimating the margins.copula_controls
, alist
with the set of fit controls that was passed tovinecop()
when estimating the copula.data
(optionally, ifkeep_data = TRUE
was used), the dataset that was passed tovine()
.nobs
, aninteger
containing the number of observations that was used to fit the model.
Concerning margins
:
For objects created with
vine_dist()
, it simply corresponds to themargins
argument.For objects created with
vine()
, it is a list of objects of classkde1d
, seekde1d::kde1d()
.
Details
vine_dist()
creates a vine copula by specifying the margins, a nested list
of bicop_dist
objects and a quadratic structure matrix.
vine()
provides automated fitting for vine copula models.
margins_controls
is a list with the same parameters as
kde1d::kde1d()
(except for x
). copula_controls
is a list
with the same parameters as vinecop()
(except for data
).
Examples
# specify pair-copulas
bicop <- bicop_dist("bb1", 90, c(3, 2))
pcs <- list(
list(bicop, bicop), # pair-copulas in first tree
list(bicop) # pair-copulas in second tree
)
# specify R-vine matrix
mat <- matrix(c(1, 2, 3, 1, 2, 0, 1, 0, 0), 3, 3)
# set up vine copula model with Gaussian margins
vc <- vine_dist(list(distr = "norm"), pcs, mat)
# show model
summary(vc)
#> $margins
#> # A data.frame: 3 x 2
#> margin distr
#> 1 norm
#> 2 norm
#> 3 norm
#>
#> $copula
#> # A data.frame: 3 x 10
#> tree edge conditioned conditioning var_types family rotation parameters df
#> 1 1 3, 1 c,c bb1 90 3, 2 2
#> 1 2 2, 1 c,c bb1 90 3, 2 2
#> 2 1 3, 2 1 c,c bb1 90 3, 2 2
#> tau
#> -0.8
#> -0.8
#> -0.8
#>
# simulate some data
x <- rvine(50, vc)
# estimate a vine copula model
fit <- vine(x, copula_controls = list(family_set = "par"))
summary(fit)
#> $margins
#> # A data.frame: 3 x 7
#> margin name nobs bw mult loglik d.f.
#> 1 V1 50 1.18 1.4 -72 4.4
#> 2 V2 50 0.98 1.4 -68 5.0
#> 3 V3 50 1.02 1.4 -73 3.1
#>
#> $copula
#> # A data.frame: 3 x 11
#> tree edge conditioned conditioning var_types family rotation parameters df
#> 1 1 2, 1 c,c clayton 90 9 1
#> 1 2 1, 3 c,c bb1 270 2.6, 3.0 2
#> 2 1 2, 3 1 c,c bb7 90 3.7, 2.3 2
#> tau loglik
#> -0.82 70
#> -0.85 78
#> -0.70 42
#>
## model for discrete data
x <- as.data.frame(x)
x[, 1] <- ordered(round(x[, 1]), levels = seq.int(-5, 5))
fit_disc <- vine(x, copula_controls = list(family_set = "par"))
summary(fit_disc)
#> $margins
#> # A data.frame: 3 x 7
#> margin name nobs bw mult loglik d.f.
#> 1 V1 50 1.25 1.4 -76 2.8
#> 2 V2 50 0.98 1.4 -68 5.0
#> 3 V3 50 1.02 1.4 -73 3.1
#>
#> $copula
#> # A data.frame: 3 x 11
#> tree edge conditioned conditioning var_types family rotation parameters df
#> 1 1 2, 1 c,d frank 0 -25 1
#> 1 2 1, 3 d,c gumbel 90 5.3 1
#> 2 1 2, 3 1 c,c indep 0 0
#> tau loglik
#> -0.85 46
#> -0.81 49
#> 0.00 0
#>