Kde1d
- class Kde1d(*args, **kwargs)
A class for univariate kernel density estimation.
The
Kde1d
class provides methods for univariate kernel density estimation using local polynomial fitting. It can handle data with bounded, unbounded, and discrete support.The estimator uses a Gaussian kernel in all cases. A log-transform is used if there is only one boundary; a probit transform is used if there are two boundaries. Discrete variables are handled via jittering.
Zero-inflated densities are estimated by a hurdle-model with discrete mass at 0 and the remainder estimated as for continuous data.
Examples
>>> import numpy as np >>> import pyvinecopulib as pv >>> >>> # Unbounded data >>> x = np.random.normal(0, 1, 500) >>> fit = pv.Kde1d() >>> fit.fit(x) >>> pdf_vals = fit.pdf(np.array([0.0])) >>> fit.plot(x) >>> >>> # Bounded data >>> x = np.random.gamma(1, size=500) >>> fit = pv.Kde1d(xmin=0.0, degree=1) >>> fit.fit(x) >>> fit.plot(x) >>> >>> # Discrete data >>> x = np.random.binomial(5, 0.5, 500) >>> fit = pv.Kde1d(xmin=0, xmax=5, type="discrete") >>> fit.fit(x) >>> fit.plot(x)
References
Geenens, G. (2014). Probit transformation for kernel density estimation on the unit interval. Journal of the American Statistical Association, 109(505), 346–358. [arXiv:1303.4121](https://arxiv.org/abs/1303.4121)
Geenens, G., & Wang, C. (2018). Local-likelihood transformation kernel density estimation for positive random variables. Journal of Computational and Graphical Statistics, 27(4), 822–835. [arXiv:1602.04862](https://arxiv.org/abs/1602.04862)
Loader, C. (2006). Local Regression and Likelihood. Springer Science & Business Media.
Nagler, T. (2018a). A generic approach to nonparametric function estimation with mixed data. Statistics & Probability Letters, 137, 326–330. [arXiv:1704.07457](https://arxiv.org/abs/1704.07457)
Nagler, T. (2018b). Asymptotic analysis of the jittering kernel density estimator. Mathematical Methods of Statistics, 27, 32–46. [arXiv:1705.05431](https://arxiv.org/abs/1705.05431)
Attributes
bandwidth
Bandwidth parameter.
degree
Degree of the local polynomial.
edf
Effective degrees of freedom.
grid_points
Grid points used for interpolation.
grid_size
Number of grid points for interpolation.
loglik
Log-likelihood of the fitted model.
multiplier
Bandwidth multiplier.
prob0
Point mass at 0 (for zero-inflated models).
type
Variable type as VarType enum.
values
Density values at grid points.
xmax
Upper bound of the density support.
xmin
Lower bound of the density support.
Methods
Constructor for the
Kde1d
class.Evaluate the cumulative distribution function.
Fit the kernel density estimate to data.
Create a Kde1d object from grid points and density values.
Create a Kde1d object from parameters.
Evaluate the probability density function.
Generates a plot for the Kde1d object.
Evaluate the quantile function.
Set the boundary parameters.
Simulate data from the fitted density.